Polar Area

19. The area of the region inside the polar curve $r=4 \sin \theta$ and outside the polar curve $r=2$ is given by
(A) $\frac{1}{2} \int_{0}^{\pi}(4 \sin \theta-2)^{2} d \theta$
(B) $\frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}}(4 \sin \theta-2)^{2} d \theta$
(C) $\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}(4 \sin \theta-2)^{2} d \theta$
(D) $\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}\left(16 \sin ^{2} \theta-4\right) d \theta$
(E) $\frac{1}{2} \int_{0}^{\pi}\left(16 \sin ^{2} \theta-4\right) d \theta$
20. Which of the following is equal to the area of the region inside the polar curve $r=2 \cos \theta$ and outside the polar curve $r=\cos \theta$?
(A) $3 \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta$
(B) $3 \int_{0}^{\pi} \cos ^{2} \theta d \theta$
(C) $\frac{3}{2} \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta$
(D) $3 \int_{0}^{\frac{\pi}{2}} \cos \theta d \theta$
(E) $3 \int_{0}^{\pi} \cos \theta d \theta$
21. Which of the following expressions gives the total area enclosed by the polar curve $r=\sin ^{2} \theta$ shown in the figure

?
A) $\frac{1}{2} \int_{0}^{\pi} \sin ^{2} \theta d \theta$
B) $\int_{0}^{\pi} \sin ^{2} \theta d \theta$
C) $\frac{1}{2} \int_{0}^{\pi} \sin ^{4} \theta d \theta$
D) $\int_{0}^{\pi} \sin ^{4} \theta d \theta$
E) $2 \int_{0}^{\pi} \sin ^{4} \theta d \theta$

22. The graphs of the polar curves $r=3$ and $r=3-2 \sin (2 \theta)$ are shown in the figure above for $0 \leq \theta \leq \pi$.
a) Let R be the shaded region that is inside the graph of $r=3$ and inside the graph of $r=3-2 \sin (2 \theta)$. Find the area of R.
b) For the curve $r=3-2 \sin (2 \theta)$, find the value of $\frac{d x}{d \theta}$ at $\theta=\frac{\pi}{6}$.
c) The distance between the two curve changes for $0 \leq \theta \leq \frac{\pi}{2}$. Find the rate at which the distance between the two curves is changing with respect to θ when $\theta=\frac{\pi}{3}$.
d) A particle is moving along the curve $r=3-2 \sin (2 \theta)$ so that $\frac{d \theta}{d t}=3$ for all times $\mathrm{t} \geq 0$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{6}$.

2011 Form B

2. The polar curve r is given $r=3 \theta+\sin \theta$, where $0 \leq \theta \leq 2 \pi$.
a) Find the area in the second quadrant enclosed by the coordinate axes and the graph of r.
b) For $\frac{\pi}{2} \leq \theta \leq \pi$, there is one point P on the polar curve with x -coordinate -3 . Find the angle θ that corresponds to point P . Find the y-coordinate of point P . Show the work that leads to your answers.
c) A particle is traveling along the polar curve r so that its position at time t is $(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}))$ and such that $\frac{d \theta}{d t}=2$. Find $\frac{d y}{d t}$ at the instant $\theta=\frac{2 \pi}{3}$, and interpret the meaning of your answer in the context of the problem.

2009 Form B BC 4

4. The graph of the polar curve $r=1-2 \cos \theta$ for $0 \leq \theta \leq \pi$ is shown above. Let S be the shaded region in the third quadrant bounded by the curve and the x -axis.
a) Write an integral expression for the area of S.
b) Write expressions for $\frac{d x}{d \theta}$ and $\frac{d y}{d \theta}$ in terms of θ.
c) Write an equation in terms of x and y for the line tangent to the graph of the polar curve at the point $\theta=\frac{\pi}{2}$. Show the computations that lead to your answer.

3. The graphs of the polar curves $\mathrm{r}=2$ and $r=3+2 \cos \theta$ are shown in the figure above.

The curves intersect when $\theta=\frac{2 \pi}{3}$ and $\theta=\frac{4 \pi}{3}$.
a) Let R be the region that is inside the graph of $\mathrm{r}=2$ and also inside the graph of $r=3+2 \cos \theta$, as shaded in the figure above. Find the area of R .
b) A particle moving with nonzero velocity along the polar curve given by $r=3+2 \cos \theta$ has position $(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}))$ at time t , with $\theta=0$ when $\mathrm{t}=0$. This particle moves along the curve so that $\frac{d r}{d t}=\frac{d r}{d \theta}$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
c) For the particle described in part $\mathrm{b}, \frac{d y}{d t}=\frac{d y}{d \theta}$. Find the value of $\frac{d y}{d t}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.

2. The graphs of the polar curves $r=3$ and $r=3-2 \sin (2 \theta)$ are shown in the figure above for $0 \leq \theta \leq \pi$.
a) Find the slope at $\theta=\frac{\pi}{3}$ for the curve $r=3-2 \sin (2 \theta)$
b) A particle moving with nonzero velocity along the polar curve given by $r=3-2 \sin (2 \theta)$ has position $(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}))$ at time t , with $\theta=0$ when $\mathrm{t}=0$. This particle moves along the curve so that $\frac{d r}{d t}=\frac{d r}{d \theta}$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
c) For the curve $r=3-2 \sin (2 \theta)$, find the value of $\frac{d x}{d \theta}$ at $\theta=\frac{\pi}{6}$.

d) The distance between the two curve changes for $0 \leq \theta \leq \frac{\pi}{2}$. Find the rate at which the distance between the two curves is changing with respect to θ when $\theta=\frac{\pi}{3}$.
e) For $0 \leq \theta \leq \pi$, there is one point P on the polar curve with x -coordinate -2 . Find the angle θ that corresponds to point P . Find the y-coordinate of point P . Show the work that leads to your answers.
f) A particle is moving along the curve $r=3-2 \sin (2 \theta)$ so that $\frac{d \theta}{d t}=3$ for all times $\mathrm{t} \geq 0$. Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{6}$.

